Affiliation:
1. Children's Hospital of Soochow University
2. Soochow University
3. Institute of High Performance Computing
Abstract
Retinopathy of prematurity (ROP) usually occurs in premature or low birth weight infants and has been an important cause of childhood blindness worldwide. Diagnosis and treatment of ROP are mainly based on stage, zone and disease, where the zone is more important than the stage for serious ROP. However, due to the great subjectivity and difference of ophthalmologists in the diagnosis of ROP zoning, it is challenging to achieve accurate and objective ROP zoning diagnosis. To address it, we propose a new key area location (KAL) system to achieve automatic and objective ROP zoning based on its definition, which consists of a key point location network and an object detection network. Firstly, to achieve the balance between real-time and high-accuracy, a lightweight residual heatmap network (LRH-Net) is designed to achieve the location of the optic disc (OD) and macular center, which transforms the location problem into a pixel-level regression problem based on the heatmap regression method and maximum likelihood estimation theory. In addition, to meet the needs of clinical accuracy and real-time detection, we use the one-stage object detection framework Yolov3 to achieve ROP lesion location. Finally, the experimental results have demonstrated that the proposed KAL system has achieved better performance on key point location (6.13 and 17.03 pixels error for OD and macular center location) and ROP lesion location (93.05% for AP50), and the ROP zoning results based on it have good consistency with the results manually labeled by clinicians, which can support clinical decision-making and help ophthalmologists correctly interpret ROP zoning, reducing subjective differences of diagnosis and increasing the interpretability of zoning results.
Funder
Doctoral Talent Introduction Research Initiation Fund of Anhui Medical University
Natural Key Science Research Program of Anhui Province University
A*STAR Advanced Manufacturing and Engineering (AME) Programmatic Fund
Suzhou Science and Technology Development Program
Natural Science Research of Jiangsu Higher Education Institutions of China
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献