Author:
Zhao Yunyi,Luo Haiming,Chen Jianan,Loureiro Rui,Yang Shufan,Zhao Hubin
Abstract
This paper provides a concise review of learning-based motion artifacts (MA) processing methods in functional near-infrared spectroscopy (fNIRS), highlighting the challenges of maintaining optimal contact during subject movement, which can lead to MA and compromise data integrity. Traditional strategies often result in reduced reliability of the hemodynamic response and statistical power. Recognizing the limited number of studies focusing on learning-based MA removal, we examine 315 studies, identifying seven pertinent to our focus area. We discuss the current landscape of learning-based MA correction methods and highlight research gaps. Noting the absence of standard evaluation metrics for quality assessment of MA correction, we suggest a novel framework, integrating signal and model quality considerations and employing metrics like ΔSignal-to-Noise Ratio (ΔSNR), confusion matrix, and Mean Squared Error. This work aims to facilitate the application of learning-based methodologies to fNIRS and improve the accuracy and reliability of neurovascular studies.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献