fNIRS-QC: Crowd-Sourced Creation of a Dataset and Machine Learning Model for fNIRS Quality Control

Author:

Gabrieli GiulioORCID,Bizzego AndreaORCID,Neoh Michelle Jin YeeORCID,Esposito GianlucaORCID

Abstract

Despite technological advancements in functional Near Infra-Red Spectroscopy (fNIRS) and a rise in the application of the fNIRS in neuroscience experimental designs, the processing of fNIRS data remains characterized by a high number of heterogeneous approaches, implicating the scientific reproducibility and interpretability of the results. For example, a manual inspection is still necessary to assess the quality and subsequent retention of collected fNIRS signals for analysis. Machine Learning (ML) approaches are well-positioned to provide a unique contribution to fNIRS data processing by automating and standardizing methodological approaches for quality control, where ML models can produce objective and reproducible results. However, any successful ML application is grounded in a high-quality dataset of labeled training data, and unfortunately, no such dataset is currently available for fNIRS signals. In this work, we introduce fNIRS-QC, a platform designed for the crowd-sourced creation of a quality control fNIRS dataset. In particular, we (a) composed a dataset of 4385 fNIRS signals; (b) created a web interface to allow multiple users to manually label the signal quality of 510 10 s fNIRS segments. Finally, (c) a subset of the labeled dataset is used to develop a proof-of-concept ML model to automatically assess the quality of fNIRS signals. The developed ML models can serve as a more objective and efficient quality control check that minimizes error from manual inspection and the need for expertise with signal quality control.

Funder

Nanyang Technological University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3