Author:
Fu Rong,Zheng Binbin,Wen Juan,Xie Luze
Abstract
Under the background of economic globalization and COVID-19, online shopping has gradually replaced offline shopping as the main shopping mode. In this paper, consumers’ perceptions are introduced into the traditional BCG matrix to form a new BCG matrix, and according to it, the small gifts of a gift e-commerce platform are classified. We then performed a robustness test comparing the BCG matrix with K-means clustering. We found that new BCG matrix can objectively reflect the value of small gifts and provide suggestions for the e-commerce platform to make subsequent product decisions. Then we judge the customer value of the platform based on the improved RFM model and K-means++ clustering, and provide a reasonable customer value classification method for the e-commerce platform. Finally, we comprehensively consider the relationship between the commodity value and customer value, and analyze the preferences of different types of customer groups for different types of small gifts. Our research result shows that small gifts can be divided into 4 categories according to commodity value, namely “stars,” “cash cows,” “questions marks,” and “dogs.” These four categories of small gifts can be converted into each other through marketing ploys. Customers can be divided into important retention customers, key loyal customers and general development customers according to their values. Faced with different types of customers, managers can adopt different strategies to extract customer value. However, consumer psychology will affect consumer cognition, and different types of consumers prefer different types of small gifts, so the precise implementation of marketing strategies will effectively improve the profitability of the gift e-commerce platform. Compared with the traditional classification method, the commodity business value classification method proposed in this paper uses management analysis and planning methods, and introduces consumer psychological factors into the commodity and customer classification, so that the classification results are more credible. In addition, we jointly analyze the results of commodity value classification and customer value classification, and analyze in detail the preferences of different valued customer groups for different types of commodities, so as to provide directions for subsequent research on customer preference.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献