An Embodied Sonification Model for Sit-to-Stand Transfers

Author:

Kantan Prithvi,Spaich Erika G.,Dahl Sofia

Abstract

Interactive sonification of biomechanical quantities is gaining relevance as a motor learning aid in movement rehabilitation, as well as a monitoring tool. However, existing gaps in sonification research (issues related to meaning, aesthetics, and clinical effects) have prevented its widespread recognition and adoption in such applications. The incorporation of embodied principles and musical structures in sonification design has gradually become popular, particularly in applications related to human movement. In this study, we propose a general sonification model for the sit-to-stand (STS) transfer, an important activity of daily living. The model contains a fixed component independent of the use-case, which represents the rising motion of the body as an ascending melody using the physical model of a flute. In addition, a flexible component concurrently sonifies STS features of clinical interest in a particular rehabilitative/monitoring situation. Here, we chose to represent shank angular jerk and movement stoppages (freezes), through perceptually salient pitch modulations and bell sounds. We outline the details of our technical implementation of the model. We evaluated the model by means of a listening test experiment with 25 healthy participants, who were asked to identify six normal and simulated impaired STS patterns from sonified versions containing various combinations of the constituent mappings of the model. Overall, we found that the participants were able to classify the patterns accurately (86.67 ± 14.69% correct responses with the full model, 71.56% overall), confidently (64.95 ± 16.52% self-reported rating), and in a timely manner (response time: 4.28 ± 1.52 s). The amount of sonified kinematic information significantly impacted classification accuracy. The six STS patterns were also classified with significantly different accuracy depending on their kinematic characteristics. Learning effects were seen in the form of increased accuracy and confidence with repeated exposure to the sound sequences. We found no significant accuracy differences based on the participants' level of music training. Overall, we see our model as a concrete conceptual and technical starting point for STS sonification design catering to rehabilitative and clinical monitoring applications.

Funder

NordForsk

Publisher

Frontiers Media SA

Subject

General Psychology

Reference82 articles.

1. ECG sonification to support the diagnosis and monitoring of myocardial infarction;Aldana Blanco;J. Multimodal User Interfaces,2020

2. What the body knows: exploring the benefits of embodied metaphors in hybrid physical digital environments;Antle;Interact. Comput,2009

3. “Data and information transmission in the context of sonification,”;Bakogiannis;Proceedings of the 26th International Conference on Auditory Display (ICAD 2021),2021

4. A robust and sensitive metric for quantifying movement smoothness;Balasubramanian;IEEE Trans. Biomed. Eng,2011

5. Heart rate sonification: a new approach to medical diagnosis;Ballora;Leonardo,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3