Author:
Trettenbrein Patrick C.,Zaccarella Emiliano
Abstract
Researchers in the fields of sign language and gesture studies frequently present their participants with video stimuli showing actors performing linguistic signs or co-speech gestures. Up to now, such video stimuli have been mostly controlled only for some of the technical aspects of the video material (e.g., duration of clips, encoding, framerate, etc.), leaving open the possibility that systematic differences in video stimulus materials may be concealed in the actual motion properties of the actor’s movements. Computer vision methods such as OpenPose enable the fitting of body-pose models to the consecutive frames of a video clip and thereby make it possible to recover the movements performed by the actor in a particular video clip without the use of a point-based or markerless motion-tracking system during recording. The OpenPoseR package provides a straightforward and reproducible way of working with these body-pose model data extracted from video clips using OpenPose, allowing researchers in the fields of sign language and gesture studies to quantify the amount of motion (velocity and acceleration) pertaining only to the movements performed by the actor in a video clip. These quantitative measures can be used for controlling differences in the movements of an actor in stimulus video clips or, for example, between different conditions of an experiment. In addition, the package also provides a set of functions for generating plots for data visualization, as well as an easy-to-use way of automatically extracting metadata (e.g., duration, framerate, etc.) from large sets of video files.
Reference26 articles.
1. The signer and the sign: cortical correlates of person identity and language processing from point-light displays.;Campbell;Neuropsychologia,2011
2. OpenPose: realtime multi-person 2D pose estimation using part affinity fields.;Cao;ArXiv,2019
3. Realtime multi-person 2D pose estimation using part affinity fields.;Cao;ArXiv,2017
4. The syntax of sign language and Universal grammar;Cecchetto;The Oxford handbook of Universal Grammar,2017
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献