Modeling Wording Effects Does Not Help in Recovering Uncontaminated Person Scores: A Systematic Evaluation With Random Intercept Item Factor Analysis

Author:

Nieto María Dolores,Garrido Luis Eduardo,Martínez-Molina Agustín,Abad Francisco José

Abstract

The item wording (or keying) effect consists of logically inconsistent answers to positively and negatively worded items that tap into similar (but polarly opposite) content. Previous research has shown that this effect can be successfully modeled through the random intercept item factor analysis (RIIFA) model, as evidenced by the improvements in the model fit in comparison to models that only contain substantive factors. However, little is known regarding the capability of this model in recovering the uncontaminated person scores. To address this issue, the study analyzes the performance of the RIIFA approach across three types of wording effects proposed in the literature: carelessness, item verification difficulty, and acquiescence. In the context of unidimensional substantive models, four independent variables were manipulated, using Monte Carlo methods: type of wording effect, amount of wording effect, sample size, and test length. The results corroborated previous findings by showing that the RIIFA models were consistently able to account for the variance in the data, attaining an excellent fit regardless of the amount of bias. Conversely, the models without the RIIFA factor produced increasingly a poorer fit with greater amounts of wording effects. Surprisingly, however, the RIIFA models were not able to better estimate the uncontaminated person scores for any type of wording effect in comparison to the substantive unidimensional models. The simulation results were then corroborated with an empirical dataset, examining the relationship between learning strategies and personality with grade point average in undergraduate studies. The apparently paradoxical findings regarding the model fit and the recovery of the person scores are explained, considering the properties of the factor models examined.

Publisher

Frontiers Media SA

Subject

General Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3