Efficiency of computerized adaptive testing with a cognitively designed item bank

Author:

Luo Hao,Yang Xiangdong

Abstract

An item bank is key to applying computerized adaptive testing (CAT). The traditional approach to developing an item bank requires content experts to design each item individually, which is a time-consuming and costly process. The cognitive design system (CDS) approach offers a solution by automating item generation. However, the CDS approach has a specific way of calibrating or predicting item difficulty that affects the measurement efficiency of CAT. A simulation study was conducted to compare the efficiency of CAT using both calibration and prediction models. The results show that, although the predictive model (linear logistic trait model; LLTM) shows a higher root mean square error (RMSE) than the baseline model (Rasch), it requires only a few additional items to achieve comparable RMSE. Importantly, the number of additional items needed decreases as the explanatory rate of the model increases. These results indicate that the slight reduction in measurement efficiency due to prediction item difficulty is acceptable. Moreover, the use of prediction item difficulty can significantly reduce or even eliminate the need for item pretesting, thereby reducing the costs associated with item calibration.

Publisher

Frontiers Media SA

Reference9 articles.

1. A cognitive design system approach to generating valid tests: application to abstract reasoning;Embretson;Psychol. Methods,1998

2. Generating items during testing: Psychometric issues and models;Embretson;Psychometrika,1999

3. “Automatic item generation and cognitive psychology,”;Embretson,2007

4. Transformer-based deep neural language modeling for construct-specific automatic item generation;Hommel;Psychometrika,2022

5. “Models with item and item group predictors,”;Janssen;Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3