1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., ...Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. 12th USENIX symposium on operating systems design and implementation (OSDI 16), 265–283. https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
2. Angleitner, A., John, O. P., & Löhr, F.-J. (1986). It’s what you ask and how you ask it: An itemmetric analysis of personality questionnaires. In A. Angleitner & J. S. Wiggins (Eds.), Personality assessment via questionnaires (pp. 61–108). Springer. https://doi.org/10.1007/978-3-642-70751-3_5
3. Bejar, I. (2013). Item generation: Implications for a validity argument. In M. J. Gierl & T. M. Haladyna (Eds.), Automatic item generation: Theory and practice (pp. 40–55). Routledge.
4. Bengio, Y. (2008). Neural net language models. Scholarpedia, 3(1), 3881. https://doi.org/10.4249/scholarpedia.3881
5. Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.