Nonverbal Social Sensing: What Social Sensing Can and Cannot Do for the Study of Nonverbal Behavior From Video

Author:

Renier Laetitia Aurelie,Schmid Mast Marianne,Dael Nele,Kleinlogel Emmanuelle Patricia

Abstract

The study of nonverbal behavior (NVB), and in particular kinesics (i.e., face and body motions), is typically seen as cost-intensive. However, the development of new technologies (e.g., ubiquitous sensing, computer vision, and algorithms) and approaches to study social behavior [i.e., social signal processing (SSP)] makes it possible to train algorithms to automatically code NVB, from action/motion units to inferences. Nonverbal social sensing refers to the use of these technologies and approaches for the study of kinesics based on video recordings. Nonverbal social sensing appears as an inspiring and encouraging approach to study NVB at reduced costs, making it a more attractive research field. However, does this promise hold? After presenting what nonverbal social sensing is and can do, we discussed the key challenges that researchers face when using nonverbal social sensing on video data. Although nonverbal social sensing is a promising tool, researchers need to be aware of the fact that algorithms might be as biased as humans when extracting NVB or that the automated NVB coding might remain context-dependent. We provided study examples to discuss these challenges and point to potential solutions.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Frontiers Media SA

Subject

General Psychology

Reference62 articles.

1. Using automated facial expression analysis for emotion and behavior prediction;Ahn;The Routledge Handbook of Emotions and Mass meDia,2010

2. Deep personality recognition for deception detection;An;Proceedings Interspeech,2018

3. DeepBehavior: a deep learning toolbox for automated analysis of animal and human behavior imaging data.;Arac;Front. Syst. Neurosci.,2019

4. Openface 2.0: facial behavior analysis toolkit;Baltrusaitis;2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018),2018

5. Automatic recognition of facial actions in spontaneous expressions.;Bartlett;J. Mult.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3