Recognizing Personality Traits Using Consumer Behavior Patterns in a Virtual Retail Store

Author:

Khatri Jaikishan,Marín-Morales Javier,Moghaddasi Masoud,Guixeres Jaime,Giglioli Irene Alice Chicchi,Alcañiz Mariano

Abstract

Virtual reality (VR) is a useful tool to study consumer behavior while they are immersed in a realistic scenario. Among several other factors, personality traits have been shown to have a substantial influence on purchasing behavior. The primary objective of this study was to classify consumers based on the Big Five personality domains using their behavior while performing different tasks in a virtual shop. The personality recognition was ascertained using behavioral measures received from VR hardware, including eye-tracking, navigation, posture and interaction. Responses from 60 participants were collected while performing free and directed search tasks in a virtual hypermarket. A set of behavioral features was processed, and the personality domains were recognized using a statistical supervised machine learning classifier algorithm via a support vector machine. The results suggest that the open-mindedness personality type can be classified using eye gaze patterns, while extraversion is related to posture and interactions. However, a combination of signals must be exhibited to detect conscientiousness and negative emotionality. The combination of all measures and tasks provides better classification accuracy for all personality domains. The study indicates that a consumer’s personality can be recognized using the behavioral sensors included in commercial VR devices during a purchase in a virtual retail store.

Funder

H2020 Marie Skłodowska-Curie Actions

Generalitat Valenciana

European Regional Development Fund

Publisher

Frontiers Media SA

Subject

General Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3