Michael is better than Mehmet: exploring the perils of algorithmic biases and selective adherence to advice from automated decision support systems in hiring

Author:

Rosenthal-von der Pütten Astrid Marieke,Sach Alexandra

Abstract

IntroductionArtificial intelligence algorithms are increasingly adopted as decisional aides in many contexts such as human resources, often with the promise of being fast, efficient, and even capable of overcoming biases of human decision-makers. Simultaneously, this promise of objectivity and the increasing supervisory role of humans may make it more likely for existing biases in algorithms to be overlooked, as humans are prone to over-rely on such automated systems. This study therefore aims to investigate such reliance on biased algorithmic advice in a hiring context.MethodSimulating the algorithmic pre-selection of applicants we confronted participants with biased or non-biased recommendations in a 1 × 2 between-subjects online experiment (n = 260).ResultsThe findings suggest that the algorithmic bias went unnoticed for about 60% of the participants in the bias condition when explicitly asking for this. However, overall individuals relied less on biased algorithms making more changes to the algorithmic scores. Reduced reliance on the algorithms led to the increased noticing of the bias. The biased recommendations did not lower general attitudes toward algorithms but only evaluations for this specific hiring algorithm, while explicitly noticing the bias affected both. Individuals with a more negative attitude toward decision subjects were more likely to not notice the bias.DiscussionThis study extends the literature by examining the interplay of (biased) human operators and biased algorithmic decision support systems to highlight the potential negative impacts of such automation for vulnerable and disadvantaged individuals.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3