Move The Object or Move The User: The Role of Interaction Techniques on Embodied Learning in VR

Author:

Bagher Mahda M.,Sajjadi Pejman,Wallgrün Jan Oliver,La Femina Peter C.,Klippel Alexander

Abstract

To incorporate immersive technologies as part of the educational curriculum, this article is an endeavor to investigate the role of two affordances that are crucial in designing embodied interactive virtual learning environments (VLEs) to enhance students’ learning experience and performance: 1) the sense of presence as a subjective affordance of the VR system, and 2) bodily engagement as an embodied affordance and the associated sense of agency that is created through interaction techniques with three-dimensional learning objects. To investigate the impact of different design choices for interaction, and how they would affect the associated sense of agency, learning experience and performance, we designed two VLEs in the context of penetrative thinking in a critical 3D task in geosciences education: understanding the cross-sections of earthquakes’ depth and geometry in subduction zones around the world. Both VLEs were web-based desktop VR applications containing 3D data that participants ran remotely on their own computers using a normal screen. In the drag and scroll condition, we facilitated bodily engagement with the 3D data through object manipulation, object manipulation. In the first-person condition, we provided the ability for the user to move in space. In other words, we compared moving the objects or moving the user in space as the interaction modalities. We found that students had a better learning experience in the drag and scroll condition, but we could not find a significant difference in the sense of presence between the two conditions. Regarding learning performance, we found a positive correlation between the sense of agency and knowledge gain in both conditions. In terms of students with low prior knowledge of the field, exposure to the VR experience in both conditions significantly improved their knowledge gain. In the matter of individual differences, we investigated the knowledge gain of students with a low penetrative thinking ability. We found that they benefited from the type of bodily engagement in the first-person condition and had a significantly higher knowledge gain than the other condition. Our results encourage in-depth studies of embodied learning in VR to design more effective embodied virtual learning environments.

Publisher

Frontiers Media SA

Reference71 articles.

1. How Does Desktop Virtual Reality Enhance Learning Outcomes? a Structural Equation Modeling Approach;Ai-Lim Lee;Comput. Edu.,2010

2. Immersive Vr and Embodied Learning: The Role of Embodied Affordances in the Long-Term Retention of Semantic Knowledge;Bagher,2020

3. Fostering Penetrative Thinking in Geosciences through Immersive Experiences: A Case Study in Visualizing Earthquake Locations in 3d;Bagher,2020

4. Presence and Memory: Immersive Virtual Reality Effects on Cued Recall;Bailey,2012

5. Grounded Cognition;Barsalou;Annu. Rev. Psychol.,2008

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3