Lean to Fly: Leaning-Based Embodied Flying can Improve Performance and User Experience in 3D Navigation

Author:

Adhikari Ashu,Hashemian Abraham M.,Nguyen-Vo Thinh,Kruijff Ernst,Heyde Markus von der,Riecke Bernhard E.

Abstract

When users in virtual reality cannot physically walk and self-motions are instead only visually simulated, spatial updating is often impaired. In this paper, we report on a study that investigated if HeadJoystick, an embodied leaning-based flying interface, could improve performance in a 3D navigational search task that relies on maintaining situational awareness and spatial updating in VR. We compared it to Gamepad, a standard flying interface. For both interfaces, participants were seated on a swivel chair and controlled simulated rotations by physically rotating. They either leaned (forward/backward, right/left, up/down) or used the Gamepad thumbsticks for simulated translation. In a gamified 3D navigational search task, participants had to find eight balls within 5 min. Those balls were hidden amongst 16 randomly positioned boxes in a dark environment devoid of any landmarks. Compared to the Gamepad, participants collected more balls using the HeadJoystick. It also minimized the distance travelled, motion sickness, and mental task demand. Moreover, the HeadJoystick was rated better in terms of ease of use, controllability, learnability, overall usability, and self-motion perception. However, participants rated HeadJoystick could be more physically fatiguing after a long use. Overall, participants felt more engaged with HeadJoystick, enjoyed it more, and preferred it. Together, this provides evidence that leaning-based interfaces like HeadJoystick can provide an affordable and effective alternative for flying in VR and potentially telepresence drones.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Reference78 articles.

1. enIntegrating Continuous and Teleporting VR Locomotion Into a Seamless ”HyperJump” Paradig;Adhikari,2021

2. Motion Sickness Evaluation and Comparison for a Static Driving Simulator and a Dynamic Driving Simulator;Aykent;Proc. Inst. Mech. Eng. D: J. Automobile Eng.,2014

3. Vision and Virtual Environments;Badcock,2014

4. Simulator Sickness Questionnaire: Twenty Years Later;Balk;Proceedings of the Seventh International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design,2013

5. Vection Change Exacerbates Simulator Sickness in Virtual Environments;Bonato;Presence: Teleoperators and Virtual Environments.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Virtual Transcendent Dream: Empowering People through Embodied Flying in Virtual Reality;CHI Conference on Human Factors in Computing Systems;2022-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3