An empirical evaluation of enhanced teleportation for navigating large urban immersive virtual environments

Author:

Shahbaz Badr Arash,De Amicis Raffaele

Abstract

Navigation is the most prevalent interaction in large urban virtual environments (VEs). Any Metaverse application that foresees navigating or exploring virtual cities requires an effective and efficient navigation technique. These environments, however, have distinct characteristics that make the navigation more challenging and the design of the interactions more critical. We have conducted an empirical study to assess how enhancing the teleportation technique with additional capabilities affects the performance of navigating large urban VEs. For this purpose, three interactions have been developed that extend the conventional point-and-click teleportation. The first one is named Mini-Map and provides a top-down view of the user’s surroundings. Portal Preview provides a preview of the selected target location and allows users to choose their desired orientation at that location. The last technique, called X-Ray Vision, makes the buildings around the user translucent and allows teleporting to locations that would otherwise be obscured. A within-subject controlled lab study with twenty five participants has been conducted, where each extension is evaluated individually as well as in combination with others. Our results show that extending the teleportation can significantly improve its performance when navigating large urban VEs. Overall, the X-Ray Vision was the most successful extension with respect to both task metrics and usability measures. Mini-Map was able to improve some of the task metrics, but did not have a significant effect on most self-reported measures. Portal Preview was the least effective extension, however, multiple participants liked the fact that they could define their desired orientation with the controller. Combining all interactions together performed well with respect to the task metrics, but this option was not favored by the participants. Extending the teleportation with X-Ray Vision and Mini-Map was by far the most favored option.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metaverse;Advances in Social Networking and Online Communities;2024-06-06

2. Behind the Scenes: Adapting Cinematography and Editing Concepts to Navigation in Virtual Reality;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

3. Try This for Size: Multi-Scale Teleportation in Immersive Virtual Reality;IEEE Transactions on Visualization and Computer Graphics;2024-05

4. VR Interaction for Efficient Virtual Manufacturing: Mini Map for Multi-User VR Navigation Platform;Advances in Transdisciplinary Engineering;2024-04-09

5. Leveraging data-driven and procedural methods for generating high-fidelity visualizations of real forests;Environmental Modelling & Software;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3