The Use of Virtual Reality in the Teaching of Challenging Concepts in Virology, Cell Culture and Molecular Biology

Author:

Reen F. Jerry,Jump Owen,McSharry Brian P.,Morgan John,Murphy David,O’Leary Niall,O’Mahony Billy,Scallan Martina,Supple Briony

Abstract

The rapidly expanding biotechnology sector horizon is expected to create a surge in demand for expertise underpinning cell and gene therapies, which are recognized as the next generation of medicines. New and innovative approaches to implement active and performative learning in the Molecular Life Sciences are required to support this and to address limitations associated with traditional “front of class” lectern delivery of challenging, three dimensional molecular concepts. Therefore, an immediate need exists for the development and implementation of immersive learning approaches in Virology, Cellular Sciences and Molecular Biology to underpin sustainable development of graduate students for academic and industrial research careers. The Covid-19 pandemic has led to significant changes in the delivery of education globally, with online engagement and accelerated uptake of novel teaching and assessment modalities into majority practice within institutions. This development has been driven by externally imposed necessity and it remains to be seen what form teaching and learning will take post-Covid. Irrespective of the pandemic, technologies are available which can serve intrinsically motivated, discipline specific shifts toward enhanced learner experiences and learning outcomes. Immersive virtual reality offers one such approach to open new entry points for student learning of abstract molecular concepts, which will be just as relevant upon our return to face-to-face teaching. Key to delivering this will be engagement and collaboration by disciplinary and technical experts. Here, we discuss global advances in the area of VR and Molecular Science education and assess potential paths forward for teaching and learning impact and innovative education.

Publisher

Frontiers Media SA

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contextualized Experiential Language Learning in the Metaverse;Proceedings of the 15th Biannual Conference of the Italian SIGCHI Chapter;2023-09-20

2. Virtual Reality Simulation in Nursing and Midwifery Education;CIN: Computers, Informatics, Nursing;2023-02-06

3. First Responder Virtual Reality Simulator to train and assess emergency personnel for mass casualty response;Journal of the American College of Emergency Physicians Open;2023-02

4. High School Students’ Engagement in Biology in the Context of XR Technology;IEEE Access;2023

5. Teaching dynamic mechanisms in signaling pathways using computational simulations;Education for Chemical Engineers;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3