Nanomaterials for diabetic wound healing: Visualization and bibliometric analysis from 2011 to 2021

Author:

Zhang Jun,Liu Hongyan,Che Tingting,Zheng Yin,Nan Xixi,Wu Zhongming

Abstract

BackgroundNanomaterials have recently been shown to have a considerable advantage in promoting wound healing in diabetic patients or animal models. However, no bibliometric analysis has been conducted to evaluate global scientific production. Herein, this study aimed to summarize the current characteristics, explore research trends, and clarify the direction of nanomaterials and diabetic wound healing in the future.MethodsRelevant publications from 2011 to 2021 were collected from the Web of Science Core Collection on October 3, 2022. VOSviewer, CiteSpace, bibliometrix-R package, Origin 2021, and Microsoft Excel 2019 were used for bibliometric and visualization analyses.ResultsWe identified 409 publications relating to nanomaterials and diabetic wound healing. The number of annual productions remarkably increased from 2011 to 2021, with China and Shanghai Jiao Tong University being the most productive. The most prolific authors were Hasan Anwarul. The leading journal was the International Journal of Biological Macromolecules, with 22 publications. The most popular keywords were “nanoparticles,” “delivery,” “in vitro,” “electrospinning,” “angiogenesis,” and “antibacterial.” Keyword burst analysis showed “cerium oxide,” “matrix metalloproteinase 9,” “composite nanofiber,” “hif 1 alpha,” and “oxide nanoparticle” were emerging research hotspots.ConclusionWe found there has been a great progress in the application of nanomaterials in diabetic wound healing from 2011 to 2021. Although many researchers and institutions from different countries or regions contributed contributed to publications, it will be helpful or the development of this field if the degree of international cooperation can be enhanced. In the future, nanomaterials with powerful antioxidant and antibacterial qualities and promoting angiogenesis are the research hotspots.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3