The analysis of Modified Qing’ E Formula on the differential expression of exosomal miRNAs in the femoral head bone tissue of mice with steroid-induced ischemic necrosis of femoral head

Author:

Zhu Wei,Zhang Faxue,Lu Junjie,Ma Chen,Shen Lin,Hu Desheng,Xu Xiaojuan,Shuai Bo

Abstract

ObjectiveTo investigate the differential expression of exosomal miRNAs in the bone marrow tissue of Modified Qing’ E Formula (MQEF) on steroid-induced ischemic necrosis of the femoral head (INFH) model.MethodsSteroid hormones were used to establish the INFH model and treated with MQEF. After successful modeling, femoral tissue exosomes were isolated for miRNA sequencing to obtain femoral tissue exosomal differential miRNAs. By GO analysis and KEGG analysis of the differential genes in both groups, the major exosomal miRNAs of MQEF exerting anti-INFH as well as the major signaling pathways were identified. Next, a quantitative metabolomic validation of MQEF with broad targeting was performed to obtain the main active components of MQEF and to perform biological analysis and signaling pathway prediction of the active components by network pharmacology. Finally, the sequencing results were validated by using RT-qPCR. The results of miRNA sequencing were verified by double examination of network pharmacology and RT-qPCR, and the exosomal miRNAs regulated by the anti-INFH effect of MQEF and the specific signaling pathway of the effect were clarified.ResultsA total of 65,389 target genes were predicted in the exosomes of two groups of mice, and 18 significant differentially expressed miRNAs were obtained, of which 14 were up-regulated and 4 down-regulated. GO enrichment analysis showed that these predicted target genes were enriched in 12371 biological processes, 1727 cell components, and 4112 molecular functions. KEGG analysis showed that the predicted miRNA target genes were annotated to 342 signal pathways, in which the highly enriched pathways closely related to bone metabolism were PI3K-Akt signal pathway, MAPK signal pathway, and Wnt signal pathway. The most significantly up-regulated miRNAs were miR-185-3p and miR-1b-5p and the most significantly down-regulated miRNAs were miR-129b-5p and miR-223-5p, of which the targeted genes were closely related to the PI3K-Akt signal pathway. MQEF aqueous decoction extract targeted metabolomics quantitatively combined with network pharmacology predicted targets also closely related to PI3K-Akt signaling pathway. Real-time quantitative PCR validation showed that miR-185-3p was up-regulated 7.2-fold and miR-129b-5p was down-regulated 2.2-fold in the treatment group, and the difference was significant (P < 0.05).ConclusionsMQEF can regulate exosomal miRNA expression in steroid-induced INFH models, miR-185-3p or miR-129b-5p/PI3K-Akt signal axis may be part of the mechanism of MQEF against steroid-induced INFH.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

Reference29 articles.

1. Osteonecrosis of the femoral head;Cohen-Rosenblum;Orthopedic Clinics North Am,2019

2. Avascular necrosis of the hip;Lamb;BMJ,2019

3. Nontraumatic osteonecrosis of the femoral head: Where do we stand today?: a 5-year update;Mont;J Bone Joint Surg Am volume,2020

4. Regulation of microRNA biogenesis;Ha;Nat Rev Mol Cell Biol,2014

5. Bone-derived exosomes;Liu;Curr Opin Pharmacol,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3