The influence of modified Qing E Formula on the differential expression of serum exosomal miRNAs in postmenopausal osteoporosis patients

Author:

Lu Junjie,Wu Hui,Jin Huan,He Ziyi,Shen Lin,Ma Chen,Xu Xiaojuan,Wang Zixian,Shuai Bo

Abstract

ObjectiveAlthough guidelines support the efficacy of Modified Qing’ E Formula (MQEF) in treating postmenopausal osteoporosis (PMOP), its underlying mechanisms remain incompletely understood. This retrospective investigation aims to elucidate MQEF’s impact on serum exosomal miRNA expression in postmenopausal osteoporosis patients and to explore potential therapeutic mechanisms.MethodsFollowing ethical approval and registration, postmenopausal osteoporosis patients aged 50–85 years, meeting the diagnostic criteria were randomly selected and received MQEF decoction supplementary therapy. Serum samples were collected pre- and post-treatment, followed by isolation and sequencing of exosomal miRNAs. Differential miRNAs in serum exosomes were identified, and bioinformatics analysis was conducted to discern the principal exosomal miRNAs involved in MQEF’s effects on PMOP and the associated signaling pathways.ResultsEighteen clinical blood samples were collected. A total of 282,185 target genes were detected across the three groups. 306 miRNAs exhibited altered expression in serum exosomes of PMOP patients, while MQEF intervention resulted in changes in 328 miRNAs. GO enrichment analysis revealed the immune and endocrine systems was pertained. KEGG enrichment analysis indicated associations between PMOP occurrence and MQEF treatment with cytokine interactions, oxidative phosphorylation, and the renin-angiotensin system. Intersectional analysis identified 17 miRNAs, including 2 consistent trends. miR-3188 as a potentially pivotal miRNA implicated in both PMOP occurrence and MQEF treatment.ConclusionThis study constitutes the first randomized, retrospective clinical exploration confirming that MQEF demonstrates regulatory influence over exosomal miRNA expression in PMOP patients’ serum, its impact likely involves modulation of the immune and endocrine systems, as well as the renin-angiotensin system.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3