Rapid Generation of TCR and CD8αβ Transgenic Virus Specific T Cells for Immunotherapy of Leukemia

Author:

Bajwa Gagan,Arber Caroline

Abstract

BackgroundVirus-specific T cells (VSTs) are an attractive cell therapy platform for the delivery of tumor-targeted transgenic receptors. However, manufacturing with conventional methods may require several weeks and intensive handling. Here we evaluated the feasibility and timelines when combining IFN-γ cytokine capture (CC) with retroviral transduction for the generation of T cell receptor (TCR) and CD8αβ (TCR8) transgenic VSTs to simultaneously target several viral and tumor antigens in a single product.MethodsHealthy donor peripheral blood mononuclear cells were stimulated with cytomegalovirus (CMV) and Epstein-Barr-Virus (EBV) peptide mixtures derived from immunogenic viral proteins, followed by CC bead selection. After 3 days in culture, cells were transduced with a retroviral vector encoding four genes (a survivin-specific αβTCR and CD8αβ). TCR8-transgenic or control VSTs were expanded and characterized for their phenotype, specificity and anti-viral and anti-tumor functions.ResultsCC selected cells were efficiently transduced with TCR8. Average fold expansion was 269-fold in 10 days, and cells contained a high proportion of CD8+ T central memory cells. TCR8+ VSTs simultaneously expressed native anti-viral and transgenic anti-survivin TCRs on their cell surface. Both control and TCR8+ VSTs produced cytokines to and killed viral targets, while tumor targets were only recognized and killed by TCR8+ VSTs.ConclusionsIFN-γ cytokine capture selects and activates CMV and EBV-specific memory precursor CD8+ T cells that can be efficiently gene-modified by retroviral transduction and rapidly ex vivo expanded. Our multi-specific T cells are polyfunctional and recognize and kill viral and leukemic targets expressing the cognate antigens.

Funder

Leukemia and Lymphoma Society

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3