Two Opposing Roles of SARS-CoV-2 RBD-Reactive Antibodies in Pre-Pandemic Plasma Samples From Elderly People in ACE2-Mediated Pseudovirus Infection

Author:

Sim Kyu-Young,Ko Gwang-Hoon,Bae So-Eun,Choi Kyu Yeong,Lee Jung Sup,Kim Byeong C.,Lee Kun Ho,Song Mi-Ryoung,Park Sung-Gyoo

Abstract

A novel coronavirus designated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged and caused an outbreak of unusual viral pneumonia. Several reports have shown that cross-reactive antibodies against SARS-CoV-2 also exist in people unexposed to this virus. However, the neutralizing activity of cross-reactive antibodies is controversial. Here, we subjected plasma samples from SARS-CoV-2-unexposed elderly Korean people (n = 119) to bead-based IgG antibody analysis. SARS-CoV-2 S1 subunit-reactive IgG antibody analysis detected positive signals in some samples (59 of 119, 49.6%). SARS-CoV-2 receptor-binding domain (RBD)-reactive antibody levels were most significantly correlated with human coronavirus-HKU1 S1 subunit-reactive antibody levels. To check the neutralizing activity of plasma samples, the SARS-CoV-2 spike pseudotype neutralizing assay was used. However, the levels of cross-reactive antibodies did not correlate with neutralizing activity. Instead, SARS-CoV-2 pseudovirus infection was neutralized by some RBD-reactive plasma samples (n = 9, neutralization ≥ 25%, P ≤ 0.05), but enhanced by other RBD-reactive plasma samples (n = 4, neutralization ≤ -25%, P ≤ 0.05). Interestingly, the blood plasma groups with enhancing and neutralizing effects had high levels of SARS-CoV-2 RBD-reactive antibodies than the plasma group that had no effect. These results suggest that some SARS-CoV-2 RBD-reactive antibodies from pre-pandemic elderly people exert two opposing functions during SARS-CoV-2 pseudovirus infection. In conclusion, preformed RBD-reactive antibodies may have two opposing functions, namely, protecting against and enhancing viral infection. Analysis of the epitopes of preformed antibodies will be useful to elucidate the underlying mechanism.

Funder

National Research Foundation of Korea

Seoul National University

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3