Analyzing some concepts of immune regulation of the last three decades: Fostering greater research resilience despite the information overload. A personal view

Author:

Bretscher Peter A.

Abstract

There is considerable interest in whether increased investment in science, made by society, pays dividends. Some plausibly argue the increased rate of production of information results in an ossification of the canon. Reports, challenging the canon, fall by the wayside. The field thus becomes increasingly complex, reflecting not so much the reality of nature but how we investigate the subject. I suggest that focusing on and resolving the paradoxes evident within a canon will free the logjam, resulting in more resilient research. Immunology is among the fastest growing of biological sciences and is, I suggest, an appropriate case study. I examine the commonly accepted frameworks employed over the last three decades to address two major, related immunological questions: what determines whether antigen activates or inactivates CD4 T cells, and so whether immune responses are initiated or this potential ablated; secondly, what determines the Th subset to which the activated Th cells belong, thus determining the class of immunity generated. I show there are major paradoxes within these frameworks, neglected for decades. I propose how research focused on resolving paradoxes can be better fostered, and so support the evolution of the canon. This perspective is pertinent in facing critical issues on how immune responses are regulated, and to more general issues of both the philosophy of science and of science policy.The last section is in response to questions and comments of the reviewers. It brings together several considerations to express my view: the same frameworks, formulated in response to the two questions, are useful in understanding the regulation of the immune response against model antigens, against self and foreign antigens, those of tumors and of pathogens.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3