Extracellular vesicles from pristane-treated CD38-deficient mice express an anti-inflammatory neutrophil protein signature, which reflects the mild lupus severity elicited in these mice

Author:

Carrillo-Rodríguez Paula,Robles-Guirado José-Ángel,Cruz-Palomares Adrián,Palacios-Pedrero Miguel Ángel,González-Paredes Elena,Más-Ciurana Alex,Franco-Herrera Carolina,Ruiz-de-Castroviejo-Teba Paloma A.,Lario Antonio,Longobardo Victoria,Montosa-Hidalgo Laura,Pérez-Sánchez-Cañete María M.,Corzo-Corbera María-Mercedes,Redondo-Sánchez Sandra,Jodar Ana-Belén,Blanco Francisco J.,Zumaquero Esther,Merino Ramón,Sancho Jaime,Zubiaur Mercedes

Abstract

In CD38-deficient (Cd38-/-)mice intraperitoneal injection of pristane induces a lupus-like disease, which is milder than that induced in WT mice, showing significant differences in the inflammatory and autoimmune processes triggered by pristane. Extracellular vesicles (EV) are present in all body fluids. Shed by cells, their molecular make-up reflects that of their cell of origin and/or tissue pathological situation. The aim of this study was to analyze the protein composition, protein abundance, and functional clustering of EV released by peritoneal exudate cells (PECs) in the pristane experimental lupus model, to identify predictive or diagnostic biomarkers that might discriminate the autoimmune process in lupus from inflammatory reactions and/or normal physiological processes. In this study, thanks to an extensive proteomic analysis and powerful bioinformatics software, distinct EV subtypes were identified in the peritoneal exudates of pristane-treated mice: 1) small EV enriched in the tetraspanin CD63 and CD9, which are likely of exosomal origin; 2) small EV enriched in CD47 and CD9, which are also enriched in plasma-membrane, membrane-associated proteins, with an ectosomal origin; 3) small EV enriched in keratins, ECM proteins, complement/coagulation proteins, fibrin clot formation proteins, and endopetidase inhibitor proteins. This enrichment may have an inflammation-mediated mesothelial-to-mesenchymal transition origin, representing a protein corona on the surface of peritoneal exudate EV; 4) HDL-enriched lipoprotein particles. Quantitative proteomic analysis allowed us to identify an anti-inflammatory, Annexin A1-enriched pro-resolving, neutrophil protein signature, which was more prominent in EV from pristane-treatedCd38-/-mice, and quantitative differences in the protein cargo of the ECM-enriched EV fromCd38-/-vs WT mice. These differences are likely to be related with the distinct inflammatory outcome shown byCd38-/-vs WT mice in response to pristane treatment. Our results demonstrate the power of a hypothesis-free and data-driven approach to transform the heterogeneity of the peritoneal exudate EV from pristane-treated mice in valuable information about the relative proportion of different EV in a given sample and to identify potential protein markers specific for the different small EV subtypes, in particular those proteins defining EV involved in the resolution phase of chronic inflammation.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3