Enhanced prediction of cement raw meal oxides by near-infrared spectroscopy using machine learning combined with chemometric techniques

Author:

Zhang Yongzhen,Yang Zhenfa,Wang Yina,Ge Xinting,Zhang Jianfeng,Xiao Hang

Abstract

The component analysis of raw meal is critical to the quality of cement. In recent years, near-infrared (NIR) has been emerged as an innovative and efficient analytical method to determine the oxide content of cement raw meal. This study aims to utilize NIR spectroscopy combined with machine learning and chemometrics to improve the prediction of oxide content in cement raw meal. The Savitzky-Golay convolution smoothing method is applied to eliminate noise interference for the analysis of calcium carbonate (CaCO3), silicon dioxide (SiO2), aluminum oxide (Al2O3), and ferric oxide (Fe2O3) in cement raw materials. Different wavelength selection techniques are used to perform a comprehensive analysis of the model, comparing the performance of several wavelength selection techniques. The back-propagation neural network regression model based on particle swarm optimization algorithm was also applied to optimize the extracted and screened feature wavelengths, and the model prediction performance was checked and evaluated using Rp and RMSE. In conclusion, the results indicate that NIR spectroscopy in combination with ML and chemometrics has great potential to effectively improve the prediction performance of oxide content in raw materials and highlight the importance of modeling and wavelength selection techniques. By enabling more accurate and efficient determination of oxide content in raw materials, NIR spectroscopy coupled with meta-modeling has the potential to revolutionize quality assurance practices in cement manufacturing.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3