Ultrafast plasma method allows rapid immobilization of monatomic copper on carboxyl-deficient g-C3N4 for efficient photocatalytic hydrogen production

Author:

Xu Shuchang,Zhang Zhihao,Wang Daqian,Lu Junyang,Guo Ying,Kang Shifei,Chang Xijiang

Abstract

Transition-metal monometallic photocatalysts have received extensive attention owing to the maximization of atomic utilization efficiency. However, in previous related works, single-atom loading and stability are generally low due to limited anchor sites and mechanisms. Recently, adding transition-metal monatomic sites to defective carbon nitrides has a good prospect, but there is still lack of diversity in defect structures and preparation techniques. Here, a strategy for preparing defect-type carbon-nitride–coupled monatomic copper catalysts by an ultrafast plasma method is reported. In this method, oxalic acid and commercial copper salt are used as a carboxyl defect additive and a copper source, respectively. Carbon nitride samples containing carboxyl defects and monatomic copper can be processed within 10 min by one-step argon plasma treatment. Infrared spectroscopy and nuclear magnetic resonance prove the existence of carboxyl defects. Spherical aberration electron microscopy and synchrotron radiation analysis confirm the existence of monatomic copper. The proportion of monatomic copper is relatively high, and the purity is high and very uniform. The Cu PCN as-prepared shows not only high photo-Fenton pollutant degradation ability but also high photocatalytic hydrogen evolution ability under visible light. In the photocatalytic reaction, the reversible change of Cu+/Cu2+ greatly promotes the separation and transmission of photogenerated carriers and improves the utilization of photoelectrons. The photocatalytic hydrogen evolution rate of the optimized sample is 8.34 mmol g−1·h−1, which is 4.54 times that of the raw carbon nitride photocatalyst. The cyclic photo-Fenton experiment confirms the catalyst has excellent repeatability in a strong oxidation environment. The synergistic mechanism of the photocatalyst obtained by this plasma is the coordination of single-atom copper sites and carboxyl defect sites. The single copper atoms incorporated can act as an electron-rich active center, enhancing the h+ adsorption and reduction capacity of Cu PCN. At the same time, the carboxyl defect sites can form hydrogen bonds to stabilize the production of hydrogen atoms and subsequently convert them to hydrogen because of the unstable hydrogen bond structure. This plasma strategy is green, convenient, environment-friendly, and waste-free. More importantly, it has the potential for large-scale production, which brings a new way for the general preparation of high-quality monatomic catalysts.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3