Modeling and optimization study on degradation of organic contaminants using nZVI activated persulfate based on response surface methodology and artificial neural network: a case study of benzene as the model pollutant

Author:

Luo Moye,Zhang Xiaodong,Long Tao,Chen Sheng,Zhan Manjun,Zhu Xin,Yu Ran

Abstract

Due to the complicated transport and reactive behavior of organic contamination in groundwater, the development of mathematical models to aid field remediation planning and implementation attracts increasing attentions. In this study, the approach coupling response surface methodology (RSM), artificial neural networks (ANN), and kinetic models was implemented to model the degradation effects of nano-zero-valent iron (nZVI) activated persulfate (PS) systems on benzene, a common organic pollutant in groundwater. The proposed model was applied to optimize the process parameters in order to help predict the effects of multiple factors on benzene degradation rate. Meanwhile, the chemical oxidation kinetics was developed based on batch experiments under the optimized reaction conditions to predict the temporal degradation of benzene. The results indicated that benzene (0.25 mmol) would be theoretically completely oxidized in 1.45 mM PS with the PS/nZVI molar ratio of 4:1 at pH 3.9°C and 21.9 C. The RSM model predicted well the effects of the four factors on benzene degradation rate (R2 = 0.948), and the ANN with a hidden layer structure of [8-8] performed better compared to the RSM (R2 = 0.980). In addition, the involved benzene degradation systems fit well with the Type-2 and Type-3 pseudo-second order (PSO) kinetic models with R2 > 0.999. It suggested that the proposed statistical and kinetic-based modeling approach is promising support for predicting the chemical oxidation performance of organic contaminants in groundwater under the influence of multiple factors.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3