Optimization of Hg(II) adsorption on bio-apatite based materials using CCD-RSM design: characterization and mechanism studies

Author:

Amiri Mohammad Javad1,Bahrami Mehdi1,Dehkhodaie Farideh1

Affiliation:

1. Department of Water Engineering, Faculty of Agriculture, Fasa University, 74616-86131 Fasa, Iran

Abstract

Abstract Bio-apatite based materials were prepared from bovine bone wastes (BBW) by thermal treatments using a direct flame (BBS) and annealing at 500–1,100 °C (BB500–BB1100). These low-crystalline materials were characterized by means of SEM, XRD, FTIR, TG, and pHPZC and were used for the adsorption of Hg(II) ions. A CCD-RSM design was used to optimize and analyze independent variables consisting of initial mercury concentration (10–100 mg L−1), pH (2–9), adsorbent mass (0.1–0.5 g), temperature (20–60 °C), and contact time (15–120 min). The results indicated that the order of the mercury uptakes for bio-apatite based adsorbents was BB500 > BB600 > BB800 > BB1100 > BBS > BBW. The dissolution–precipitation and ion-exchange reaction are the two dominant mechanisms for the removal of Hg(II) ions at low and high pH values, respectively. The CCD-RSM predicted maximum mercury adsorption of 99.99% under the optimal conditions of 51.31 mg L−1, 0.44 g, 6.5, 67.5 min, and 50 °C for initial mercury concentration, adsorbent mass, pH, contact time, and temperature, respectively. The findings of the present study revealed that the bio-apatite based materials, particularly BB500, are suitable and versatile adsorbents for the treatment of mercury-containing wastewater.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3