Nanomaterials as carriers to improve the photodynamic antibacterial therapy

Author:

Liu Houhe,Jiang Yuan,Wang Zhen,Zhao Linping,Yin Qianqian,Liu Min

Abstract

The main treatment for bacterial infections is antibiotic therapy, but the emergence of bacterial resistance has severely limited the efficacy of antibiotics. Therefore, another effective means of treating bacterial infections is needed to alleviate the therapeutic pressure caused by antibiotic resistance. Photodynamic antibacterial therapy (PDAT) has gradually entered people’s field of vision as an infection treatment method that does not depend on antibiotics. PDAT induces photosensitizers (PS) to produce reactive oxygen species (ROS) under light irradiation, and kills bacteria by destroying biological macromolecules at bacterial infection sites. In recent years, researchers have found that some nanomaterials delivering PS can improve PDAT through targeted delivery or synergistic therapeutic effect. Therefore, in this article, we will review the recent applications of several nanomaterials in PDAT, including metal nanoclusters, metal-organic frameworks, and other organic/inorganic nanoparticles, and discuss the advantages and disadvantage of these nanomaterials as carriers for delivery PS to further advance the development of PDAT.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3