Singlet oxygen production of Zn-Ag-In-S quantum dots for photodynamic treatment of cancer cells and bacteria

Author:

Sheng Yang1ORCID,Qing Danni1,Li Naijun1,Zhang Peng1,Sun Yixin1,Zhang Rong1ORCID

Affiliation:

1. National Experimental Demonstration Center for Materials Science and Engineering, Jiangus Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China

Abstract

Zn-Ag-In-S (ZAIS) quantum dots (QDs) were synthesized with various Ag-to-In ratios and used as novel photosensitizers for photodynamic therapy (PDT) on cancer cell inhibition and bacterial sterilization, and their structural, optical, and photodynamic properties were investigated. The alloyed QDs displayed a photoluminescence quantum yield of 72% with a long fluorescence lifetime of 5.3 μs when the Ag-to-In ratio was 1:3, suggesting a good opportunity as a dual functional platform for fluorescence imaging and PDT. The ZAIS QDs were then coated with amphiphilic brush copolymer poly(maleic anhydride-alt-1-octadecene) (PMAO) before application. The 1O2 quantum yield of the ZAIS/PMAO was measured to be 8%, which was higher than previously reported CdSe QDs and comparable to some organic photosensitizers. Moreover, the ZAIS QDs showed excellent stability in aqueous and biological media, unlike organic photosensitizers that tend to degrade over time. The in vitro PDT against human melanoma cell line (A2058) and Staphylococcus aureus shows about 30% inhibition rate upon 20 min light irradiation. Cell staining images clearly demonstrated that co-treatment with ZAIS QDs and light irradiation effectively killed A2058 cells, demonstrating the potential of ZAIS QDs as novel and versatile photosensitizers for PDT in cancer and bacterial treatment, and provides useful information for future designing of QD-based photosensitizers.

Funder

CZ-EdU Joint Laboratory on Biomedical Materials

Top-notch Academic Programs Project of Jiangsu Higher Education Institutions

The Priority Academic Program Development of Jiangsu Higher Education Institution

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3