Assessing oxygen limiting fermentation conditions for 2,3-butanediol production from Paenibacillus polymyxa

Author:

Stoklosa Ryan J.,Latona Renee J.,Johnston David B.

Abstract

2,3-butanediol (2,3-BDO) is a platform chemical that can be converted to a wide array of products ranging from bio-based materials to sustainable aviation fuel. This chemical can be produced by a variety of microorganisms in fermentation processes. Challenges remain for high titer 2,3-BDO production during fermentation due to several parameters, but controlling oxygen is one of the most relevant processing parameters to ensure viable product output. This work investigated the fermentation of plant biomass sugars by the 2,3-BDO producer Paenibacillus polymyxa. Aerobic and oxygen limited fermentation conditions were initially evaluated using molasses-based media to determine cell growth and 2,3-BDO output. Similar conditions were then evaluated on hydrolysate from pretreated sweet sorghum bagasse (SSB) that contained fermentable sugars from structural polysaccharides. Fermentations in molasses media under aerobic conditions found that 2,3-BDO could be generated, but over time the amount of 2,3-BDO decreased due to conversion back into acetoin. Oxygen limited fermentation conditions exhibited improved biomass growth, but only limited suppression of 2,3-BDO conversion to acetoin occurred. Glucose depletion appeared to have a greater role influencing 2,3-BDO conversion back into acetoin. Further improvements in 2,3-BDO yields were found by utilizing detoxified SSB hydrolysate.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3