Experimental Investigation of Cavitation-Induced Erosion Using X-Ray Imaging and Tomography

Author:

Moon Chi Young,Magnotti Gina M.,Sforzo Brandon A.,Tekawade Aniket,Kastengren Alan L.,Powell Christopher F.

Abstract

High injection pressure in diesel engines can lead to cavitation-induced erosion in injector nozzles. One important factor affecting the severity of erosion is the fuel and its properties. Traditionally, modeling and simulation studies have used single-component representations of fuels, but realistic fuels feature a multitude of components and can even include volatile additives such as water and alcohol. To provide realistic benchmarks and comparisons, experimental measurements quantifying erosion characteristics were made using ultra-low sulfur diesel (ULSD) and two alternative diesel fuels (ADF). X-ray imaging and computed tomography were used to investigate cavitation-induced erosion onset and progression. Hard X-ray tomography revealed injector internal geometry, including details such as surface marks from the manufacturing process and erosion patterns from repeated injections. Erosion progression was measured using X-ray tomography and imaging performed between injections. The critical erosion site was found to be similar across different fuel blends, while the erosion rate and incubation time were sensitive to the fuel blend. The injector geometry and the erosion characteristics were also prepared for numerical model development and validation.

Funder

U.S. Department of Energy

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3