Investigation Into Cavitation Erosion Pits

Author:

Abouel-Kasem A.1,El-Deen A. Ezz1,Emara K. M.1,Ahmed S. M.1

Affiliation:

1. Department of Mechanical Engineering, Assiut University, Assiut 71516, Egypt

Abstract

Cavitation erosion pits and their effects on erosion progression were investigated in detail for SUS 304 stainless steel, α+β brass (60/40), and pure aluminum (Al-99.999 and Al-99.92) by means of vibratory erosion. Two kinds of erosion pits were found on the specimen surfaces, one by microjet impact and the other by shockwave blow. Systematic observations of the feature of microjet-pits with the testing time showed that the sizes and shapes of microjet-pits did not change at all and such pits scarcely played an important role in developing the erosion. Moreover, the feature morphology of eroded surfaces, and dislodged particles and their large sizes revealed that microjet-pits had a limited effect on erosion and that the predominant failure was a fatigue process.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3