Use of an Under-Water Compressed Air Energy Storage (UWCAES) to Fully Power the Sicily Region (Italy) With Renewable Energy: A Case Study

Author:

Tiano Francesco Antonio,Rizzo Gianfranco

Abstract

The high concentration of CO2 in the atmosphere and the increase in sea and land temperatures make the use of renewable energy sources increasingly urgent. To overcome the problem of non-programmability of renewable sources, this study analyzes an energy storage system consisting of under water compressed air energy storage (UWCAES). A case study for fully power the Sicily region (Italy) with renewable energy source (wind and photovoltaic) is presented. From the real annual capacity values of the renewable plants installed in Sicily, a sizing of both the energy production and the storage system and its auxiliary services is evaluated. The optimization of the operation of the system as a whole, modeled with mathematical models already validated in previous studies, is obtained through dynamic programming. The electricity consumed annually by the region, equal to 19048.4 GWh, can be entirely satisfied by renewable energy sources. A sizing of plants powered by renewable sources for a nominal power of 15, 000 MW equally divided between photovoltaic and wind power is considered. The underwater air storage system has a maximum volume of 2.1 × 108 m3, while the compression and generation units have a total nominal power of 6, 900 and 3, 100 MW, respectively. The study finally presents a sensitivity analysis for the evaluation of the effects of the variation of the power produced by renewable energy sources and of Sicily energy consumption. The results show that carbon-free feeding is possible and that all the boundary conditions on the operation of the system can be met.

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Reference46 articles.

1. Optimal management of a wind/caes power plant by means of neural network wind speed forecast;Arsie,2007

2. A model of a hybrid power plant with wind turbines and compressed air energy storage;Arsie,2005

3. Energy and economic evaluation of a hybrid caes/wind power plant with neural network-based wind speed forecasting, (Chicago, IL);Arsie,2006

4. Vivace (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow;Bernitsas;J. Offshore Mech. Arctic Eng.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3