Evaluation of Variable Compressor Technologies

Author:

Grigoriadis Panagiotis,Hoffmann Alexander,La Chi Binh

Abstract

A diverse set of technology solutions are in development for reducing vehicular CO2 emissions. Beside the conventional internal combustion engine, there are hybrid powertrains, fuel cells and full electric vehicles. The challenge is finding the right technology that can be quickly implemented into production as a cost effective solution. In addition to CO2 reduction during vehicle operation, the impact of CO2 in the production and recycling of future vehicles must also be considered. From this perspective, the role of turbocharging is evolving, becoming more important for the future. It is an enabler for mature technologies known to improve engine efficiency like Miller timing, lean burn, increased exhaust gas recirculation (EGR) dilution and exhaust heat recovery. As a boosting device, improved turbocharging can also benefit other powertrain types like fuel cells. All previously mentioned applications benefit from wider compressor maps and higher compressor ratios. To achieve an extension of the performance map to areas of low mass flow rate, different methods have been discussed with the two most promising being trim reduction introduced by IAV’s Variable Trim Compressor (VTC) and swirl generation. The most common device for inducing a swirl onto the incoming airflow is to use swirl generating wings in front of the compressor wheel. However, Iwakiri explained that putting a single plate in front of the compressor wheel disturbs the recirculating flow, which acts positively to extend the compressor map. On this basis, plates were developed that guide the strongly swirled back flowing air in such a way that they impose a swirl on the incoming air. Trim reduction is well known for its ability to shift the surge line and maintain compressor efficiency. To achieve this, a conical element before the compressor wheel guides the incoming flow to the inner area of the wheel resulting in reduced flow separation. An orifice can also achieve almost the same effect but with much less axial extension. The advantages and disadvantages of these measures are explained using numerical (CFD) and experimental (turbocharger test bench) to show the potential of each approach. In summary trim reduction using a conical geometry is still the best performing approach. However, considering package restrictions, an orifice is also a good choice. Whereas swirl producing principles have a moderate impact on shifting the surge line. The extension of high mass flow rate is also of interest and this study shows a simple method to improve the compressor performance map in this area. A combination of the measures to expand the map in both directions is conceivable and is presented here as a concept.

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Reference22 articles.

1. Model-based efficiency improvement of automotive fuel cell systems;Bilz,2016

2. Turboladerverdichter mit variablem Einlass zur Realisierung hocheffizienter Antriebskonzepte;Bogner,2018

3. Erweiterung des Verdichterkennfelds eines Abgasturboladers für verbrauchsoptimierte Verbrennungsmotoren;Czapka,2015

4. The New 1.5-l EA211 TGI evo;Demmelbauer-Ebner;MTZ Worldwide.,2018

5. Variable geometry compressor development to improve operating range and efficiency for automotive turbocharger;Fujiwara,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3