Author:
Meruva P.,Matheaus A.,Sharp C. A.,McCarthy J. E.,Masoudi M.,Poliakov N.,Noorfeshan S.
Abstract
New regulations by the California Air Resources Board (CARB) demand a stringent 0.02 g/hp-hr tailpipe NOxlimit by the year 2027, requiring Selective Catalytic Reduction (SCR) catalysts to provide high NOxconversions even at low (below 200°C) exhaust temperatures. This work describes utilizing an Electrically Heated Mixer System (EHM system) upstream of a Light-Off Selective Catalytic Reduction (LO-SCR) catalyst followed by a conventional aftertreatment (AT) system containing DOC, DPF, and SCR, enabling high NOxconversions meeting CARB’s NOxemission target. The AT catalysts were hydrothermally aged to Full Useful Life. Conventional unheated Diesel Exhaust Fluid (DEF) was injected upstream of both the LO-SCR and primary downstream SCR. The EHM system allowed for DEF to be injected as low as 130°C upstream of the LO-SCR, whereas, in previous studies, unheated DEF was injected at 180°C or dosed at 130°C with heated DEF. The combination of unheated DEF, EHM system, LO-SCR, and downstream SCR enabled the needed increase in NOxefficiency in low exhaust temperatures, which was observed in drive cycles such as in cold-FTP, LLC, and World Harmonized Transient Cycle (WHTC). There were several-fold reductions in tailpipe NOxusing this configuration compared to its baseline: 3.3-fold reduction in FTP, 22-fold in Low Load Cycle (LLC), 38-fold in Beverage Cycle, 8-fold in “Stay Hot” Cycle, and 10-fold in WHTC. Finally, it is shown that the EHM system can heat the exhaust gas, such as during a cold start, without needing additional heating hardware integrated into the system. These results were observed without performing changes in the engine base calibration.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献