Across-Species Pose Estimation in Poultry Based on Images Using Deep Learning

Author:

Doornweerd Jan Erik,Kootstra Gert,Veerkamp Roel F.,Ellen Esther D.,van der Eijk Jerine A. J.,van de Straat Thijs,Bouwman Aniek C.

Abstract

Animal pose-estimation networks enable automated estimation of key body points in images or videos. This enables animal breeders to collect pose information repeatedly on a large number of animals. However, the success of pose-estimation networks depends in part on the availability of data to learn the representation of key body points. Especially with animals, data collection is not always easy, and data annotation is laborious and time-consuming. The available data is therefore often limited, but data from other species might be useful, either by itself or in combination with the target species. In this study, the across-species performance of animal pose-estimation networks and the performance of an animal pose-estimation network trained on multi-species data (turkeys and broilers) were investigated. Broilers and turkeys were video recorded during a walkway test representative of the situation in practice. Two single-species and one multi-species model were trained by using DeepLabCut and tested on two single-species test sets. Overall, the within-species models outperformed the multi-species model, and the models applied across species, as shown by a lower raw pixel error, normalized pixel error, and higher percentage of keypoints remaining (PKR). The multi-species model had slightly higher errors with a lower PKR than the within-species models but had less than half the number of annotated frames available from each species. Compared to the single-species broiler model, the multi-species model achieved lower errors for the head, left foot, and right knee keypoints, although with a lower PKR. Across species, keypoint predictions resulted in high errors and low to moderate PKRs and are unlikely to be of direct use for pose and gait assessments. A multi-species model may reduce annotation needs without a large impact on performance for pose assessment, however, with the recommendation to only be used if the species are comparable. If a single-species model exists it could be used as a pre-trained model for training a new model, and possibly require a limited amount of new data. Future studies should investigate the accuracy needed for pose and gait assessments and estimate genetic parameters for the new phenotypes before pose-estimation networks can be applied in practice.

Publisher

Frontiers Media SA

Reference48 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3