Broiler Mobility Assessment via a Semi-Supervised Deep Learning Model and Neo-Deep Sort Algorithm

Author:

Jaihuni Mustafa1ORCID,Gan Hao2ORCID,Tabler Tom1ORCID,Prado Maria1ORCID,Qi Hairong3ORCID,Zhao Yang1ORCID

Affiliation:

1. Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA

2. Department of Biosystems Engineering, University of Tennessee, Knoxville, TN 37996, USA

3. Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA

Abstract

Mobility is a vital welfare indicator that may influence broilers’ daily activities. Classical broiler mobility assessment methods are laborious and cannot provide timely insights into their conditions. Here, we proposed a semi-supervised Deep Learning (DL) model, YOLOv5 (You Only Look Once version 5), combined with a deep sort algorithm conjoined with our newly proposed algorithm, neo-deep sort, for individual broiler mobility tracking. Initially, 1650 labeled images from five days were employed to train the YOLOv5 model. Through semi-supervised learning (SSL), this narrowly trained model was then used for pseudo-labeling 2160 images, of which 2153 were successfully labeled. Thereafter, the YOLOv5 model was fine-tuned on the newly labeled images. Lastly, the trained YOLOv5 and the neo-deep sort algorithm were applied to detect and track 28 broilers in two pens and categorize them in terms of hourly and daily travel distances and speeds. SSL helped in increasing the YOLOv5 model’s mean average precision (mAP) in detecting birds from 81% to 98%. Compared with the manually measured covered distances of broilers, the combined model provided individual broilers’ hourly moved distances with a validation accuracy of about 80%. Eventually, individual and flock-level mobilities were quantified while overcoming the occlusion, false, and miss-detection issues.

Funder

USDA-NIFA IDEAS program

AI TENNessee Initiative Seed Funds

UT Animal Science Department

UT Joseph E. Johnson Research

Teaching Unit

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3