Large-Scale Analysis of Fitness Cost of tet(X4)-Positive Plasmids in Escherichia coli

Author:

Tang Feifei,Cai Wenhui,Jiang Lijie,Wang Zhiqiang,Liu Yuan

Abstract

Tigecycline is one of important antimicrobial agents for the treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria. However, the emergence and prevalence of plasmid-mediated tigecycline resistance gene tet(X4) are threatening human and animal health. Fitness cost elicited by resistance plasmids is a key factor affecting the maintenance and transmission of antibiotic resistance genes (ARGs) in the host. A comparative analysis of the fitness cost of different types of tet(X4)-positive plasmids is helpful to understand and predict the prevalence of dominant plasmids. In this study, we performed a large-scale analysis of fitness cost of tet(X4)-positive plasmids origin from clinical isolates. These plasmids were successfully electroporated into a reference strain Escherichia coli TOP10, and a series of transformants carrying the tet(X) gene were obtained. The effects of tet(X4)-positive plasmids on the growth rate, plasmid stability, relative fitness, biofilm formation, and virulence in a Galleria mellonella model were evaluated. Consequently, we found that these plasmids resulted in varying degrees of fitness cost on TOP10, including delayed bacterial growth and attenuated virulence. Out of these plasmids, tet(X4)-harboring IncFII plasmids showed the lowest fitness cost on the host. Furthermore, by means of experimental evolution in the presence of commonly used drugs in clinic, the fitness cost of tet(X4)-positive plasmids was substantially alleviated, accompanied by increased plasmid stability. Collectively, our data reveal the differential fitness cost caused by different types of tet(X4)-positive plasmids and suggest that the wide use of tetracycline antibiotics may promote the evolution of plasmids.

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3