Dynamic evolution of ceftazidime–avibactam resistance due to interchanges between blaKPC-2 and blaKPC-145 during treatment of Klebsiella pneumoniae infection

Author:

Chen Yili,Yang Runshi,Guo Penghao,Liu Pingjuan,Deng Jiankai,Wu Zhongwen,Wu Qingping,Huang Junqi,Liao Kang

Abstract

BackgroundThe emergence of ceftazidime–avibactam (CZA) resistance among carbapenem-resistant Klebsiella pneumoniae (CRKP) is of major concern due to limited therapeutic options.MethodsIn this study, 10 CRKP strains were isolated from different samples of a patient with CRKP infection receiving CZA treatment. Whole-genome sequencing (WGS) and conjugation experiments were performed to determine the transferability of the carbapenem resistance gene.ResultsThis infection began with a KPC-2-producing K. pneumoniae (CZA MIC = 2 μg/mL, imipenem MIC ≥ 16 μg/mL). After 20 days of CZA treatment, the strains switched to the amino acid substitution of T263A caused by a novel KPC-producing gene, blaKPC-145, which restored carbapenem susceptibility but showed CZA resistance (CZA MIC ≥ 256 μg/mL, imipenem MIC = 1 μg/mL). The blaKPC-145 gene was located on a 148,185-bp untransformable IncFII-type plasmid. The subsequent use of carbapenem against KPC-145-producing K. pneumoniae infection led to a reversion of KPC-2 production (CZA MIC = 2 μg/mL, imipenem MIC ≥ 16 μg/mL). WGS analysis showed that all isolates belonged to ST11-KL47, and the number of SNPs was 14. This implied that these blaKPC-positive K. pneumoniae isolates might originate from a single clone and have been colonized for a long time during the 120-day treatment period.ConclusionThis is the first report of CZA resistance caused by blaKPC-145, which emerged during the treatment with CZA against blaKPC-2-positive K. pneumoniae-associated infection in China. These findings indicated that routine testing for antibiotic susceptibility and carbapenemase genotype is essential during CZA treatment.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3