Caching and Reproducibility: Making Data Science Experiments Faster and FAIRer

Author:

Schubotz Moritz,Satpute Ankit,Greiner-Petter André,Aizawa Akiko,Gipp Bela

Abstract

Small to medium-scale data science experiments often rely on research software developed ad-hoc by individual scientists or small teams. Often there is no time to make the research software fast, reusable, and open access. The consequence is twofold. First, subsequent researchers must spend significant work hours building upon the proposed hypotheses or experimental framework. In the worst case, others cannot reproduce the experiment and reuse the findings for subsequent research. Second, suppose the ad-hoc research software fails during often long-running computational expensive experiments. In that case, the overall effort to iteratively improve the software and rerun the experiments creates significant time pressure on the researchers. We suggest making caching an integral part of the research software development process, even before the first line of code is written. This article outlines caching recommendations for developing research software in data science projects. Our recommendations provide a perspective to circumvent common problems such as propriety dependence, speed, etc. At the same time, caching contributes to the reproducibility of experiments in the open science workflow. Concerning the four guiding principles, i.e., Findability, Accessibility, Interoperability, and Reusability (FAIR), we foresee that including the proposed recommendation in a research software development will make the data related to that software FAIRer for both machines and humans. We exhibit the usefulness of some of the proposed recommendations on our recently completed research software project in mathematical information retrieval.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference13 articles.

1. “Automated symbolic and numerical testing of DLMF formulae using computer algebra systems,”;Cohl,2018

2. “Performance problems you can fix: A dynamic analysis of memoization opportunities,”;Della Toffola,2015

3. Architectural Styles and the Design of Network-Based Software Architectures (Ph.D. thesis) FieldingR. T. TaylorR. N. Information and Computer Science2000

4. “Comparative verification of the digital library of mathematical functions and computer algebra systems,”;Greiner-Petter,2022

5. Semantic preserving bijective mappings for expressions involving special functions in computer algebra systems and document preparation systems;Greiner-Petter;Aslib J. Inf. Manag.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3