Using interactive Jupyter Notebooks and BioConda for FAIR and reproducible biomolecular simulation workflows

Author:

Bayarri Genís,Andrio Pau,Gelpí Josep Lluís,Hospital AdamORCID,Orozco Modesto

Abstract

Interactive Jupyter Notebooks in combination with Conda environments can be used to generate FAIR (Findable, Accessible, Interoperable and Reusable/Reproducible) biomolecular simulation workflows. The interactive programming code accompanied by documentation and the possibility to inspect intermediate results with versatile graphical charts and data visualization is very helpful, especially in iterative processes, where parameters might be adjusted to a particular system of interest. This work presents a collection of FAIR notebooks covering various areas of the biomolecular simulation field, such as molecular dynamics (MD), protein–ligand docking, molecular checking/modeling, molecular interactions, and free energy perturbations. Workflows can be launched with myBinder or easily installed in a local system. The collection of notebooks aims to provide a compilation of demonstration workflows, and it is continuously updated and expanded with examples using new methodologies and tools.

Funder

BioExcel Centre of Excellence for Computational Biomolecular Research

Spanish Ministry of Science

Instituto de Salud Carlos III–Instituto Nacional de Bioinformatica, Fondo Europeo de Desarrollo Regional

European Regional Development Fund, ERFD Operative Programme for Catalunya, the Catalan Government AGAUR

MDDB: Molecular Dynamics Data Bank European Repository for Biosimulation Data

Publisher

Public Library of Science (PLoS)

Reference61 articles.

1. A manifesto for reproducible science;MR Munafò;Nat Hum Behav,2017

2. Reliability and reproducibility in computational science: implementing validation, verification and uncertainty quantification in silico.;PV Coveney;Philos Trans R Soc A Math Phys Eng Sci.,2021

3. Reproducible Research in Computational Science.;RD Peng;Science,2011

4. “Caching and Reproducibility: Making Data Science Experiments Faster and FAIRer,” Frontiers in Research Metrics and Analytics.;M Schubotz;Perspective.,2022

5. Where next for the reproducibility agenda in computational biology?;J Lewis;BMC Syst Biol,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3