Active learning-based systematic reviewing using switching classification models: the case of the onset, maintenance, and relapse of depressive disorders

Author:

Teijema Jelle Jasper,Hofstee Laura,Brouwer Marlies,de Bruin Jonathan,Ferdinands Gerbrich,de Boer Jan,Vizan Pablo,van den Brand Sofie,Bockting Claudi,van de Schoot Rens,Bagheri Ayoub

Abstract

IntroductionThis study examines the performance of active learning-aided systematic reviews using a deep learning-based model compared to traditional machine learning approaches, and explores the potential benefits of model-switching strategies.MethodsComprising four parts, the study: 1) analyzes the performance and stability of active learning-aided systematic review; 2) implements a convolutional neural network classifier; 3) compares classifier and feature extractor performance; and 4) investigates the impact of model-switching strategies on review performance.ResultsLighter models perform well in early simulation stages, while other models show increased performance in later stages. Model-switching strategies generally improve performance compared to using the default classification model alone.DiscussionThe study's findings support the use of model-switching strategies in active learning-based systematic review workflows. It is advised to begin the review with a light model, such as Naïve Bayes or logistic regression, and switch to a heavier classification model based on a heuristic rule when needed.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference41 articles.

1. Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis;Alwosheel;J. Choice Model,2018

2. Building knowledge integration systems for evidence-informed decisions;Best;J. Health Organiz. Manage,2009

3. Introduction to Meta‐Analysis

4. BrouwerM. van de SchootR. Results Reanalyzing Meta-Analysis Depression Data without Hard-to-Find papers2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3