Machine learning to optimize literature screening in medical guideline development

Author:

Harmsen Wouter,de Groot Janke,Harkema Albert,van Dusseldorp Ingeborg,de Bruin Jonathan,van den Brand Sofie,van de Schoot RensORCID

Abstract

Abstract Objectives In a time of exponential growth of new evidence supporting clinical decision-making, combined with a labor-intensive process of selecting this evidence, methods are needed to speed up current processes to keep medical guidelines up-to-date. This study evaluated the performance and feasibility of active learning to support the selection of relevant publications within medical guideline development and to study the role of noisy labels. Design We used a mixed-methods design. Two independent clinicians’ manual process of literature selection was evaluated for 14 searches. This was followed by a series of simulations investigating the performance of random reading versus using screening prioritization based on active learning. We identified hard-to-find papers and checked the labels in a reflective dialogue. Main outcome measures Inter-rater reliability was assessed using Cohen’s Kappa (ĸ). To evaluate the performance of active learning, we used the Work Saved over Sampling at 95% recall (WSS@95) and percentage Relevant Records Found at reading only 10% of the total number of records (RRF@10). We used the average time to discovery (ATD) to detect records with potentially noisy labels. Finally, the accuracy of labeling was discussed in a reflective dialogue with guideline developers. Results Mean ĸ for manual title-abstract selection by clinicians was 0.50 and varied between − 0.01 and 0.87 based on 5.021 abstracts. WSS@95 ranged from 50.15% (SD = 17.7) based on selection by clinicians to 69.24% (SD = 11.5) based on the selection by research methodologist up to 75.76% (SD = 12.2) based on the final full-text inclusion. A similar pattern was seen for RRF@10, ranging from 48.31% (SD = 23.3) to 62.8% (SD = 21.20) and 65.58% (SD = 23.25). The performance of active learning deteriorates with higher noise. Compared with the final full-text selection, the selection made by clinicians or research methodologists deteriorated WSS@95 by 25.61% and 6.25%, respectively. Conclusion While active machine learning tools can accelerate the process of literature screening within guideline development, they can only work as well as the input given by human raters. Noisy labels make noisy machine learning.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

ZonMw

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3