Addressing researcher fraud: retrospective, real-time, and preventive strategies–including legal points and data management that prevents fraud

Author:

Kennedy James E.

Abstract

Researcher fraud is often easy and enticing in academic research, with little risk of detection. Cases of extensive fraud continue to occur. The amount of fraud that goes undetected is unknown and may be substantial. Three strategies for addressing researcher fraud are (a) retrospective investigations after allegations of fraud have been made, (b) sting operations that provide conclusive evidence of fraud as it occurs, and (c) data management practices that prevent the occurrence of fraud. Institutional and regulatory efforts to address researcher fraud have focused almost exclusively on the retrospective strategy. The retrospective approach is subject to controversy due to the limitations of post-hoc evidence in science, the difficulty in establishing who actually committed the fraud in some cases, the application of a legal standard of evidence that is much lower than the usual standards of evidence in science, and the lack of legal expertise by scientists investigating fraud. The retrospective strategy may be reliably effective primarily in cases of extensive, careless fraud. Sting operations can overcome these limitations and controversies, but are not feasible in many situations. Data management practices that are effective at preventing researcher fraud and unintentional errors are well-established in clinical trials regulated by government agencies, but appear to be largely unknown or unimplemented in most academic research. Established data management practices include: archiving secure copies of the raw data, audit trails, restricted access to the data and data collection processes, software validation, quality control checks, blinding, preregistration of data processing and analysis programs, and research audits that directly address fraud. Current discussions about data management in academic research focus on sharing data with little attention to practices that prevent intentional and unintentional errors. A designation or badge such as error-controlled data management could be established to indicate research that was conducted with data management practices that effectively address intentional and unintentional errors.

Publisher

Frontiers Media SA

Reference70 articles.

1. BalthazarD. Q&A: The Scientific Integrity Sleuth Taking on the Widespread Problem of Research Misconduct2024

2. BikE. Science Integrity Digest Blog2024

3. Methods to assess research misconduct in health-related research: a scoping review;Bordewijk;J. Clin. Epidemiol,2021

4. Data management and sharing: practices and perceptions of psychology researchers;Borghi;PLoS ONE,2021

5. BouffardK. Scientist Gets 10-Year Ban From Federal Research in Wayne State University Misconduct Case2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3