Small-Area Estimation for the USDA Forest Service, National Woodland Owner Survey: Creating a Fine-Scale Land Cover and Ownership Layer to Support County-Level Population Estimates

Author:

Harris Vance,Caputo Jesse,Finley Andrew,Butler Brett J.,Bowlick Forrest,Catanzaro Paul

Abstract

Small area estimation is a powerful modeling technique in which ancillary data can be utilized to “borrow” additional information, effectively increasing sample sizes in small spatial, temporal, or categorical domains. Though more commonly applied to biophysical variables within the study of forest inventory analyses, small area estimation can also be implemented in the context of understanding social values, behaviors, and trends among types of forest landowners within small domains. Here, we demonstrate a method for deriving a continuous fine-scale land cover and ownership layer for the state of Delaware, United States, and an application of that ancillary layer to facilitate small-area estimation of several variables from the USDA Forest Service’s National Woodland Owner Survey. Utilizing a proprietary parcel layer alongside the National Land Cover Database, we constructed a continuous layer with 10-meter resolution depicting land cover and land ownership classes. We found that the National Woodland Owner Survey state-level estimations of total acreage and total ownerships by ownership class were generally within one standard error of the population values calculated from the raster layer, which supported the direct calculation of several population-level summary variables at the county levels. Subsequently, we compare design-based and model-based methods of predicting commercial harvesting by family forest ownerships in Delaware in which forest ownership acreage, taken from the parcel map, was utilized to inform the model-based approach. Results show general agreement between the two modes, indicating that a small area estimation approach can be utilized successfully in this context and shows promise for other variables, especially if additional variables, e.g., United States Census Bureau data, are also incorporated.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3