A comparative study of 17 phenological models to predict the start of the growing season

Author:

Mo Yunhua,Zhang Jing,Jiang Hong,Fu Yongshuo H.

Abstract

Vegetation phenological models play a major role in terrestrial ecosystem modeling. However, substantial uncertainties still occur in phenology models because the mechanisms underlying spring phenological events are unclear. Taking into account the asymmetric effects of daytime and nighttime temperature on spring phenology, we analyzed the performance of 17 spring phenological models by combining the effects of photoperiod and precipitation. The global inventory modeling and mapping study third-generation normalized difference vegetation index data (1982–2014) were used to extract the start of the growing season (SOS) in the North–South Transect of Northeast Asia. The satellite-derived SOS of deciduous needleleaf forest (DNF), mixed forest (MF), open shrublands (OSL), and woody savannas (WS) showed high correlation coefficients (r) with the model-predicted SOS, with most exceeding 0.7. For all vegetation types studied, the models that considered the effect of photoperiod and precipitation did not significantly improve the model performance. For temperature-based models, the model using the growing-degree-day temperature response had a lower root mean square error compared with the models using the sigmoid temperature response Importantly, we found that daily maximum temperature was most suitable for the spring phenology prediction of DNF, OSL, and WS; daily mean temperature for MF; and daily minimum temperature for grasslands. These findings indicate that future spring phenological models should consider the asymmetric effect between daytime and nighttime temperature across different vegetation types.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Reference85 articles.

1. A new look at the statistical model identification.;Akaike;IEEE Trans. Automat. Contr.,1974

2. Observed and projected climate trends and hotspots across the national ecological observatory network regions.;Anderegg;Front. Ecol. Environ.,2016

3. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe.;Basler;Agric. For. Meteorol.,2016

4. The ERA-interim archive: Version 2.0.;Berrisford;Nihon Seirigaku Zasshi,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3