The Advancement in Spring Vegetation Phenology in the Northern Hemisphere Will Reverse After 2060 Under Future Moderate Warming Scenarios

Author:

Mo Yunhua1,Chen Shouzhi1ORCID,Wu Zhaofei1,Tang Jing23,Fu Yongshuo14ORCID

Affiliation:

1. College of Water Sciences Beijing Normal University Beijing China

2. Department of Physical Geography and Ecosystem Science Lund University Lund Sweden

3. Terrestrial Ecology Section Department of Biology University of Copenhagen Copenhagen Denmark

4. Plants and Ecosystems Department of Biology University of Antwerp Wilrijk Belgium

Abstract

AbstractGlobal warming has largely advanced spring vegetation phenology, which has subsequently affected terrestrial carbon and water cycles. However, further shifts in vegetation phenology under future climate change remain unclear. We estimated the start of the growing season (SOS) by applying multiple extraction methods based on the NDVI3g data set, and then parameterized and evaluated 11 spring vegetation phenology models that included chilling, forcing, and the photoperiod. Based on scenario data from three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585) derived from eight climate models, future vegetation phenology was predicted using the phenology models. Results showed that all the phenology models performed better than the NULL model (mean of the SOS), with the performance of one‐phase models broadly matching that of two‐phase models, although the best models varied by vegetation type. The spatial pattern of simulated SOS was similar among the models, and it explained >75% of the variation. Based on the mean predicted SOS, we found that spring vegetation phenology will continue to advance under strong warming conditions (SSP245 and SSP585), but that the trend of advance will reverse at around 2060 under the SSP126 scenario. The continued trend in SOS advance is likely related to rapid forcing fulfillment under stronger warming conditions. However, under moderate warming, chilling might be reduced and it might require longer to compensate for higher forcing, which ultimately would result in SOS delay. Our findings highlight that trends will likely change under different warming conditions, potentially causing widespread impact on species interaction, biodiversity, and ecosystem function.

Funder

National Science Fund for Distinguished Young Scholars

Overseas Expertise Introduction Project for Discipline Innovation

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3