Impact of 30 years precipitation regime differences on forest soil physiology and microbial assemblages

Author:

Chakraborty Amrita,Zádrapová Dagmar,Dvořák Jakub,Faltinová Zuzana,Žáček Petr,Cajthaml Tomáš,Korecký Jiří,Roy Amit

Abstract

Anthropogenic disturbances and climate change affect abiotic and biotic environmental drivers in forest ecosystems. Global warming impacts the soil moisture content, thus influencing the diversity, abundance and functioning of soil microfauna. However, limited studies have been conducted to evaluate the impact of long-term variation in precipitation on soil microfauna. A better understanding of soil microfauna functioning under various precipitation regimes can aid in formulating better prediction models for assessing future climate change impacts. The present study uses a multi-omics approach to capture the variability in the total organic carbon (TOC), total nitrogen (TN), pH, metabolites, microbial biomass and function due to the difference in soil water content mediated by long-term precipitation (30 years) and soil texture differences in two Norway spruce seed orchards. Results showed a positive correlation between TOC, TN, extracellular enzyme activities (EEAs) and phospholipid fatty acids (PLFA) content with higher precipitation, whereas microbial diversity showed an opposite trend. A distinct metabolic profile was observed between the two forest soils. Furthermore, variance partitioning canonical correspondence analysis (VPA) revealed a higher contribution of TOC and TN in shaping the microbial communities than soil pH and conductivity in Norway spruce seed orchards. Our study generates field data for modeling the impact of long-term precipitation variance supplemented by soil texture on soil microbial assemblage and function in Norway spruce stands.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3