Effect of Simulated Organic–Inorganic N Deposition on Leaf Stoichiometry, Chlorophyll Content, and Chlorophyll Fluorescence in Torreya grandis

Author:

Yuan Yichao1,Zhang Haochen1,Shi Xianmeng2,Han Yini1,Liu Yang1,Jin Songheng13ORCID

Affiliation:

1. Jiyang College, Zhejiang A&F University, Zhuji 311800, China

2. CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China

3. School of Life Science and Health, Huzhou College, Huzhou 313000, China

Abstract

Atmospheric nitrogen (N) deposition is coupled with organic nitrogen (ON) and inorganic nitrogen (IN); however, little is known about plant growth and the balance of elements in Torreya grandis growing under different ON/IN ratios. Here, we investigated the effects of ON/IN ratios (1/9, 3/7, 7/3, and 9/1) on leaf stoichiometry (LF), chlorophyll content, and chlorophyll fluorescence of T. grandis. We used ammonium nitrate as the IN source and an equal proportion of urea and glycine as the ON source. The different ON/IN ratios altered the stoichiometry and photochemical efficiency in T. grandis. Although the leaf P content increased significantly after treatment, leaf N and N:P maintained a certain homeostasis. Torreya grandis plants performed best at an ON/IN ratio of 3/7, with the highest values of chlorophyll-a, total chlorophyll, maximum photochemical efficiency, and photosynthetic performance index. Thus, both ON and IN types should be considered when assessing the responses of plant growth to increasing N deposition in the future. Our results also indicated that the leaf P concentration was positively correlated with Chl, Fv/Fm, and PIabs. This result further indicates the importance of the P element for plant growth against the background of nitrogen deposition. Overall, these results indicate that T. grandis might cope with changes in the environment by maintaining the homeostasis of element stoichiometry and the plasticity of PSII activity.

Funder

National Natural Science Foundation of China

National Key Research and Development Project of China

“Leading Talents” R & D Program in Universities of Zhejiang, China

Jiyang College of Zhejiang A & F University

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3