Accumulator, Transporter, Substrate, and Reactor: Multidimensional Perspectives and Approaches to the Study of Bark

Author:

Ponette-González Alexandra G.

Abstract

Woody ecosystems have a relatively thin but aerially extensive and dynamic layer of bark that, like leaves, regulates material exchange at the interface of air, water, and biota. Through interception, retention, and leaching of materials and interactions with epiphytic communities, bark alters the chemistry and composition of water draining over its surface during precipitation. This mini-review explores different perspectives and approaches to the study of bark and what they reveal about the myriad ways bark surfaces influence the quality of sub-canopy precipitation. Observational studies conducted over the past five decades in the fields of environmental science, ecohydrology, epiphyte ecology, and microbiology demonstrate that bark is an accumulator, transporter, substrate, and reactor. Bark passively accumulates materials from the atmosphere, water, and canopies, and also serves as an active transport surface, exchanging materials laterally and longitudinally. In addition, bark substrates influence epiphyte diversity, composition, and distribution, which, in turn, affect material cycling. Bark surfaces are dynamic over time, changing in response to disturbances (e.g., insect outbreaks, aging, and tree death)—how such changes influence the chemical and elemental composition of throughfall and stemflow merits further study. Moving forward, integration of diverse perspectives and approaches is needed to elucidate the influence of bark surfaces on solute and particulate transport and cycling within woody ecosystems.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3